Context 00000	Univariate solving 000	Resultants and bivariate solving	Application to Poseidon	Open problems 0000

Solving CICO-2 bounty instances of POSEIDON

Antoine Bak 1,2 Augustin Bariant Aurelien Boeuf 1 Maël Hostettler 3 Guilhem Jazeron 1

¹INRIA Paris

²DGA, Paris

³Télécom SudParis, Evry

March 15, 2025

Context 00000	Univariate solving 000	Resultants and bivariate solving	Application to Poseidon	Open problems

Outline

Context

- 2 Univariate solving
- 8 Resultants and bivariate solving
- Application to POSEIDON

5 Open problems

Plan of this Section

Context

- 2 Univariate solving
- 3 Resultants and bivariate solving
- 4 Application to POSEIDON
- 5 Open problems

Context

The POSEIDON family of permutations

- POSEIDON and POSEIDON2 are a family of arithmetization-oriented permutations.
- Optimized for zero-knowledge proof systems (PLONK, STARKs, Groth16, Bulletproofs).
- Substitution-Permutation Network with an alternation of full rounds and partial rounds.

Figure: An overview of POSEIDON. POSEIDON2 has an extra linear layer before the first round.

Guilhem Jazeron

Sponge construction and CICO

- POSEIDON can be turned into a hash function by using it inside a *sponge* construction.
- The CICO (Constrained Input Constrained Output) problem is important to assess the capabilities of an attacker.

Definition (CICO problem)

Let $f : \mathbb{F}_p^t \to \mathbb{F}_p^t$ be a permutation. Then, for k < t, the CICO-k problem is defined as the problem of finding $x \in \mathbb{F}_p$ such that some subset of k coordinates of both x and f(x) are equal to 0.

CICO as a polynomial system

- POSEIDON outputs can easily be modeled as polynomials: it is composed of a succession of additions, linear operations an application of monomials.
- Write POSEIDON $(x_1, ..., x_t) = (P_1(x_1, ..., x_t), ..., P_t(x_1, ..., x_t))$
- Then CICO-k becomes: find (x_1, \ldots, x_{t-k}) with:

$$\begin{cases} P_1(0,...,0,x_{k+1},...,x_t) &= 0 \\ \vdots \\ P_k(0,...,0,x_{k+1},...,x_t) &= 0 \end{cases}$$

Ethereum foundation bounties

Instance	Base primitive	CICO branches	Prime field (bits)	t	d	R_F	R _P
Poseidon-256	Poseidon	1	BLS12-381 (256)	3	5	6	8
						6	9
						6	11
						6	16
Poseidon2-64	Poseidon2	1	Goldilocks (64)	8	7	6	7
						6	8
						6	10
						6	13
Poseidon2-31m	Poseidon2	2	Mersenne (31)	16	5	4	0
						4	1
						6	1
						6	4
Poseidon2-31k	Poseidon2	2	KoalaBear (31)	16	3	4	1
						4	3
						6	4

In orange, the instances we successfully attacked

- We did not manage to attack any of the POSEIDON2-64 instances.
- For CICO-1, we used already known techniques, however for CICO-2 we used resultants: applied very recently to AO primitives cryptanalysis.

Plan of this Section

1 Context

2 Univariate solving

3 Resultants and bivariate solving

4 Application to POSEIDON

Open problems

Univariate polynomial solving

The problem

- Let $P = \sum_{i=0}^{d} a_i X^i \in \mathbb{F}_q[X]$ be a polynomial.
- We wish to find one $x \in \mathbb{F}_q$ such that P(x) = 0. In other words, a root of P in \mathbb{F}_q .

• How to do so ? With what complexity ?

The usual approach

Idea : the roots of P that belong to \mathbb{F}_q are such that $x^q = x$. Thus, they are common roots of P and $X^q - X$.

The algorithm

Algorithm

- Compute $Q(X) = X^q X \mod P(X)$ with a double-and-add approach.
- **2** Compute G = gcd(P, Q).
- \bigcirc G will have degree one or two with high probability, so we efficently recover its roots.

Complexity analysis

Let δ be the degree of the input polynomial, and q be the size of the field.

- First step : $\tilde{\mathcal{O}}(\delta \log(q))$ operations
- Second step, using the half-gcd algorithm : $\tilde{\mathcal{O}}(\delta)$.

Total : quasi-linear, in $\tilde{\mathcal{O}}(\delta \log(q))$ field operations.

Plan of this Section

1 Context

- 2 Univariate solving
- 8 Resultants and bivariate solving
- 4 Application to POSEIDON
- Open problems

Introduction: Resultants

Let
$$P(X) = 1X^3 + 2X^2 + 0X - 1 +$$
, $Q(X) = 1X^2 + 5X + 3$.

How to know if P and Q share a common root?

Strategies:

- Compute the **GCD** of P and Q.
- Compute the **resultant** of P and Q.

Introduction: Resultants

Let
$$P(X) = 1X^3 + 2X^2 + 0X - 1 +$$
, $Q(X) = 1X^2 + 5X + 3$.

Definition

The **Sylvester matrix** of *P* and *Q* is the square matrix of size 3 + 2:

$$Syl(P,Q) = \begin{pmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 & -1 \\ 1 & 5 & 3 & 0 & 0 \\ 0 & 1 & 5 & 3 & 0 \\ 0 & 0 & 1 & 5 & 3 \end{pmatrix}$$

Introduction: Resultants

Let
$$P(X) = 1X^3 + 2X^2 + 0X - 1 +$$
, $Q(X) = 1X^2 + 5X + 3$.

Definition

The resultant of P and Q is defined as

$$\mathsf{Res}(P,Q) = \mathsf{det}(\mathsf{Syl}(P,Q))$$
.

Theorem

The polynomials P and Q share a common in the algebraic closure of \mathbb{F}_q if and only if

 $\operatorname{Res}(\operatorname{P}, Q) = 0$.

Efficient computation of resultants

Let deg(P) = n, deg(Q) = m.

Computing Res(P, Q) requires computing the determinant of a size n + m matrix:

• The naive approach takes time

$$\mathcal{O}\left((n+m)^3\right)$$
 .

• The *half-gcd* algorithm for resultants yields

 $\tilde{\mathcal{O}}(n+m)$.

Application to bivariate solving

Let P(X, Y), Q(X, Y) such that $\deg(P), \deg(Q) \leq \delta$.

How to find x_0, y_0 such that $P(x_0, y_0) = Q(x_0, y_0) = 0$?

Idea

Start by finding y_0 such that the polynomials $P(X, y_0)$ and $Q(X, y_0)$ share a common root.

Said otherwise: y_0 such that $\operatorname{Res}(P(X, y_0), Q(X, y_0)) = 0$.

Application to bivariate solving

Let P(X, Y), Q(X, Y) such that deg(P), $deg(Q) \le \delta$.

Resultant in a variable

We define the resultant of P and Q in X as follows:

- *P* and *Q* can be considered as polynomials in *X*, with coefficients in $\mathbb{F}_p[Y]$.
- The resultant is the determinant of a matrix in the coefficients of P, Q:

 $\operatorname{Res}_X(P,Q) = R(Y) \in \mathbb{F}_p[Y]$.

Evaluation-interpolation method

Let P(X, Y), Q(X, Y) such that $\deg(P), \deg(Q) \leq \delta$.

Algorithm

Knowing that deg(R) $\leq d_{\text{Res}}$ (a trivial bound gives $d_{\text{Res}} \leq \delta^2$) we do as follows:

- Take $d_{\text{Res}} + 1$ points $y_1, \ldots, y_{d_{\text{Res}}+1}$.
- Solution Evaluate all the $P(X, y_i), Q(X, y_i)$.
- Sompute $R(y_i) = \operatorname{Res}(P(X, y_i), Q(X, y_i)).$
- Interpolate R(Y).

Evaluation-interpolation method

Let P(X, Y), Q(X, Y) such that $\deg(P), \deg(Q) \leq \delta$.

Quasi-linear time algorithms for multipoint evaluation and interpolation do exist.

Complexity estimate

The algorithm performs the following steps:

- **Q** Evaluation: Evaluate $\mathcal{O}(\delta)$ polynomials in $d_{\text{Res}} + 1$ points.
- **2 Resultant computations:** Compute $d_{\text{Res}} + 1$ resultants of polynomials of degree δ .
- **③** Interpolation: Interpolate a polynomial of degree d_{Res} .

The total complexity equals:

$$ilde{\mathcal{O}}(\delta \cdot \textit{d}_{\mathsf{Res}})$$
 .

Plan of this Section

1 Context

- 2 Univariate solving
- 3 Resultants and bivariate solving

Application to POSEIDON

5 Open problems

Context 00000	Univariate solving	Resultants and bivariate solving	Application to Poseidon 0●00000	Open problems

Polynomial modelling

- Write POSEIDON = $F_{R_{tot}} \circ F_{R_{tot}-1} \circ \cdots \circ F_1$ where each $F_i : \mathbb{F}_q^t \to \mathbb{F}_q^t$ is the composition of:
 - one or two matrix application(s),
 - one application of monomials x^d (partial or full)
 - and one round constant addition.
- Clearly, each F_i is composed of t polynomials of degree d in t variables.

Polynomial modelling

- Write POSEIDON = $F_{R_{tot}} \circ F_{R_{tot}-1} \circ \cdots \circ F_1$ where each $F_i : \mathbb{F}_q^t \to \mathbb{F}_q^t$ is the composition of:
 - one or two matrix application(s),
 - one application of monomials x^d (partial or full)
 - and one round constant addition.
- Clearly, each F_i is composed of t polynomials of degree d in t variables.

If we wish to solve CICO-k, set X_1, \ldots, X_k variables.

- Choose k + 1 vectors (see later how) A_1, \ldots, A_k, B in \mathbb{F}_q^t .
- 2 Iteratively compute $F_{R_{tot}} \circ ... \circ F_1(X_1 \cdot A_1 + \dots + X_k \cdot A_k + B) = (P_1(X_1, ..., X_k), ..., P_t(X_1, ..., X_k))$
- **3** We get t polynomials of degree $d^{R_{tot}}$ in k variables.
- Solve for the first k polynomials being 0.

Round skipping trick

- We use a **round skipping trick** that allows us to skip one round:
 - Map an affine space where the k last coordinates are 0 to another affine space through the first round.
 - Start polynomial solving from the affine space obtained after the first round.
 - Compute backwards to get a CICO-k solution.
- This trick has already been used on the first round of $\ensuremath{\text{POSEIDON}}$ bounty challenges, in the CICO-1 case.

$$\mathcal{Z}_k = \{x \in \mathbb{F}_q^n \text{ such that } x_1 = \cdots = x_k = 0\}$$
 .

CICO-1 attack

In the case of CICO-1, we simply:

- Model the problem as a polynomial system, as explained earlier.
- Apply the round skipping trick.
- We are left with one univariate polynomial to solve.
- Solve it using the algorithm in $\tilde{\mathcal{O}}(\delta)$ where δ is the degree of the polynomial.
- Here: $\delta = d^{R_F 1 + R_P}$, so the total complexity is $\tilde{O}(d^{R_F 1 + R_P})$

This technique is not new and was already the one used in the previous $\operatorname{POSEIDON}$ bounty challenges.

CICO-2 attack

Taking advantage of the resultant approach

In the case of CICO-2, we can make use of the resultant approach:

- **1** Model the problem as a polynomial system, as explained earlier.
- Apply the round skipping trick.
- Solution This time, we are left with a system with two polynomials in two variables.
- Solve it using the algorithm explained before: $\tilde{O}(\delta d_{res})$ where δ is the degree of the polynomials, d_{res} the degree of their resultant.
- Here: $\delta = d^{R_F 1 + R_P}$ and $d_{res} = d^{2 \cdot (R_F 1) + R_P}$ (experimental result), so the total complexity is $\tilde{O}(d^{3 \cdot (R_F 1) + 2 \cdot R_P})$

CICO-2 attack

Taking advantage of the resultant approach

In the case of CICO-2, we can make use of the resultant approach:

- **1** Model the problem as a polynomial system, as explained earlier.
- Apply the round skipping trick.
- S This time, we are left with a system with two polynomials in two variables.
- Solve it using the algorithm explained before: $\tilde{O}(\delta d_{res})$ where δ is the degree of the polynomials, d_{res} the degree of their resultant.
- Here: $\delta = d^{R_F 1 + R_P}$ and $d_{res} = d^{2 \cdot (R_F 1) + R_P}$ (experimental result), so the total complexity is $\tilde{O}(d^{3 \cdot (R_F 1) + 2 \cdot R_P})$
- New approach, performs much better than the **Gröbner basis** approach, which is used to solve generic, *n*-variable polynomial systems.
- The Gröbner basis complexity was used to assess the security of POSEIDON in the case of CICO-2, which allowed us to break some claims.

Context 00000	Univariate solving	Resultants and bivariate solving	Application to Poseidon 00000●0	Open problem

Results

Instance	R _F	R _P	EF estimate	Our estimate	Practical time	Memory usage
Poseidon2-31k CICO-2	4 4 6	1 3 4	32 41 45	19.6 30.6 43	0.11s 1.55s 2.6h	6MB 611MB 10TB
Poseidon2-31m CICO-2	4 4 6	0 1 1	37 40 45	18.8 26.8 37.5	0.31s 4.01s 40h	41MB 1GB 5.4 GB
Poseidon-256 CICO-1	6 6	8 9	31 36	43.1 45.6	8h [*] 8.5d	250GB 1,3TB

*Our solution was not the first on this instance.

Table: Theoretical and practical complexities of our attacks. Complexity estimates in log₂ scale. In **bold**, the instances where we beat the claim

Implementation details

NTL: for handling polynomials and for efficient polynomial arithmetic.

- PML: (Polynomial Matrix Library) was used for the interpolation-evaluation resultant algorithm, with a few optimizations.
- Hardware: AMD EPYC 9354 with 1TB of RAM, 12TB of NVMe swap memory and 120 threads, for all instances except the third instance of Poseidon2-31m, which used 1000 cores of Intel Xeon 5218.

Plan of this Section

1 Context

- 2 Univariate solving
- 3 Resultants and bivariate solving
- 4 Application to POSEIDON

5 Open problems

Computing resultants faster

Degree of the resultants

- The degree of the two polynomials forming the system is $d^{R_F+R_P}$. We would expect the degree of the resultant to be $d^{2R_F+2R_P}$.
- However, we experimentally noticed that the degree of the resultant is $d^{2R_F+R_P}$.
- It also corresponds to the degree of the *polynomial ideal*: why is that ?

Consequences in terms of security

- This fact saves a factor d^{R_P} in the computation.
- Hints that partial rounds are not as strong as full rounds to prevent algebraic attacks.

Computing resultants faster

Better resultant algorithm

- Our bivariate resultant algorithm is not the state-of-the-art algorithm.
- There exists a better algorithm by Villard, that runs in $\tilde{\mathcal{O}}(\delta^{2+\varepsilon})$ (ours is in $\tilde{\mathcal{O}}(\delta^{3})$).
- However, this algorithm is **not implemented** in the finite field polynomial libraries (NTL, Flint, ...).

How does the resultant attack affect the security of **POSEIDON**?

- Also remains to understand how this new resultant attack would affect 'real-world' POSEIDON instances.
- We extrapolated the complexities of our attacks using theoretical estimations.
- The following instances were generated with a security level matching the complexity of solving a CICO-k via bruteforce.

Instance	t	d	R _F	R _P	k	Our CICO- <i>k</i> complexity	Bruteforce CICO-k complexity
Poseidon2-31k	16	3	8	20	2	105.1	62
Poseidon2-31m	16	5	8	12	2	110.8	62
Poseidon2-64	8	7	8	22	1	97.6	64
Poseidon-256	3	5	8	114	1	298.8	255

How does the resultant attack affect the security of $\operatorname{POSEIDON}?$

- Also remains to understand how this new resultant attack would affect 'real-world' POSEIDON instances.
- We extrapolated the complexities of our attacks using theoretical estimations.
- The following instances were generated with a security level matching the complexity of solving a CICO-k via bruteforce.

Instance	t	d	R _F	R _P	k	Our CICO- <i>k</i> complexity	Bruteforce CICO-k complexity
Poseidon2-31k	16	3	8	20	2	105.1	62
Poseidon2-31m	16	5	8	12	2	110.8	62
Poseidon2-64	8	7	8	22	1	97.6	64
Poseidon-256	3	5	8	114	1	298.8	255
Thank you!							