Cryptanalysis of Monolith using rebound attacks

Pierre Galissant ¹ <u>Guilhem Jazeron</u> ¹ Léo Perrin ¹

¹INRIA Paris

March 31, 2025

2 4-round rebound attack on Monolith-64

Open problems

Plan of this Section

4-round rebound attack on Monolith-64

3 Open problems

Context

- Arithmetization-oriented family of permutations : efficient in *incrementally verifiable computation* (IVC) schemes that allow lookups.
- Family composed of 4 permutations $f : \mathbb{F}_p^t \to \mathbb{F}_p^t$.
- Can be turned into a hash function (sponge construction) or compression function $(x \in \mathbb{F}_p^t \mapsto \operatorname{Tr}_{t/2}(f(x) + x))$
- Monolith-64 claims 128 bits of security, Monolith-31 claims 124 bits of security.

The Monolith design

SPN design with :

- A MDS matrix : diffusion.
- A partial layer of Split-and-Lookup SBoxes (Bar) : efficient (lookup tables), high algebraic degree.
- A generalized Feistel layer where for each branch, $y_i = x_i + x_{i-1}^2$: very strong differential properties (PN).
- Addition of round constants (AddC).
- 6 rounds for all versions.

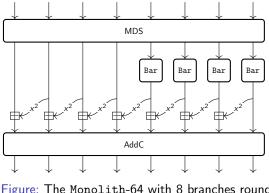


Figure: The Monolith-64 with 8 branches round function

Monolith parameters

	$\begin{array}{l} \texttt{Monolith-64}\\ p=p_{\rm goldlilocks}=2^{64}-2^{32}+1 \end{array}$	$egin{aligned} & ext{Monolith-31} \ & p = p_{ ext{mersenne}} = 2^{31} - 1 \end{aligned}$
Compression function	t = 8 u = 4	t = 16 $u = 8$
Hash function	t = 12 $u = 4$	t = 24 $u = 8$

Table: Overview of the 4 instances of Monolith t : number of branches u : number of Bar SBoxes per round.

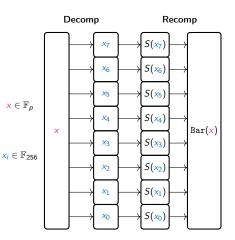
In orange, the instance upon which we will describe an attack.

Split-and-Lookups

The Split-and-Lookup construction

Example of $p_{\rm goldlilocks}$

- **2** Apply a small SBox $S : \mathbb{F}_{256} \to \mathbb{F}_{256}$ to each x_i
- Obtain the ouput Bar(x) = $S(x_0) + 2^8 S(x_1) + \dots + 2^{56} S(x_7)$



Split-and-Lookups

The Split-and-Lookup construction

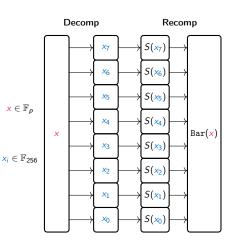
Example of $p_{\mathrm{goldlilocks}}$

- $x \in \mathbb{F}_{p} = x_{0} + 2^{8}x_{1} + \dots + 2^{56}x_{7}$
- **2** Apply a small SBox $S : \mathbb{F}_{256} \to \mathbb{F}_{256}$ to each x_i
- Obtain the ouput Bar(x) = $S(x_0) + 2^8 S(x_1) + \dots + 2^{56} S(x_7)$

In Monolith-64

High algebraic degree ! But...

- $S(x) = (x \oplus [(\overline{x} \ll 1) \land (x \ll 2) \land (x \ll 3)]) \ll 1$
- S(x) = 2x with good probability.
- Hence, $\operatorname{Bar}(x) = 2x$ with probability $\sim 2^{-22}$
- Weak differential properties: 1 $\xrightarrow{\text{Bar}}$ 2 with probability $\frac{62}{256} \sim \frac{1}{4}$



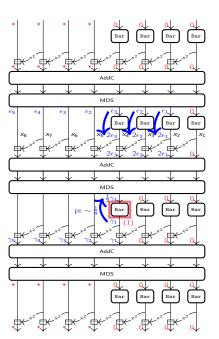
Plan of this Section

The Monolith family of permutations

2 4-round rebound attack on Monolith-64

3 Open problems

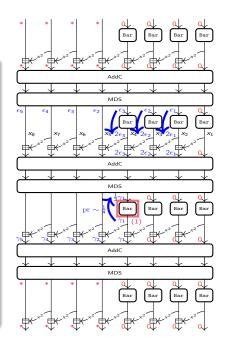
Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.



Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.

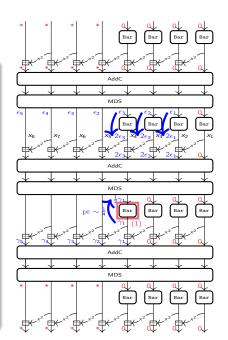
Description of the attack

(Choose γ_1 with $\frac{1}{2}\gamma_1 \xrightarrow{Bar} \gamma_1$ with probability $\sim \frac{1}{4}$



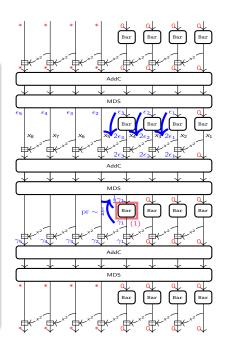
Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.

- Choose γ_1 with $\frac{1}{2}\gamma_1 \xrightarrow{Bar} \gamma_1$ with probability $\sim \frac{1}{4}$
- Solution Choose $\epsilon_1, \epsilon_2, \epsilon_3$ with $\epsilon_i \xrightarrow{Bar} 2\epsilon_i$ with probability at least T.



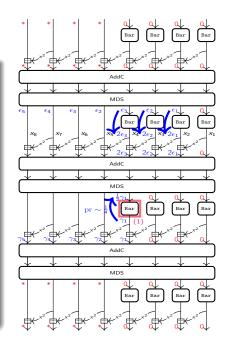
Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.

- Choose γ_1 with $\frac{1}{2}\gamma_1 \xrightarrow{Bar} \gamma_1$ with probability $\sim \frac{1}{4}$
- **2** Choose $\epsilon_1, \epsilon_2, \epsilon_3$ with $\epsilon_i \xrightarrow{Bar} 2\epsilon_i$ with probability at least T.
- Same the SBox (1) behaves as x → 2x, with probability 2⁻²².



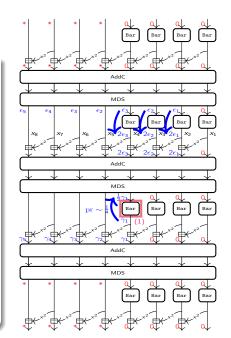
Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.

- Choose γ_1 with $\frac{1}{2}\gamma_1 \xrightarrow{Bar} \gamma_1$ with probability $\sim \frac{1}{4}$
- Solution Choose $\epsilon_1, \epsilon_2, \epsilon_3$ with $\epsilon_i \xrightarrow{Bar} 2\epsilon_i$ with probability at least T.
- Same the SBox (1) behaves as x → 2x, with probability 2⁻²².
- Choose $\epsilon_2, \ldots, \epsilon_5$ such that the 4 last branches through M^{-1} are 0, and $\gamma_2, \ldots, \gamma_5$ such that the last 4 branches through M are 0



Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.

- Choose γ_1 with $\frac{1}{2}\gamma_1 \xrightarrow{Bar} \gamma_1$ with probability $\sim \frac{1}{4}$
- Solution Choose $\epsilon_1, \epsilon_2, \epsilon_3$ with $\epsilon_i \xrightarrow{Bar} 2\epsilon_i$ with probability at least T.
- Same the SBox (1) behaves as x → 2x, with probability 2⁻²².
- Choose $\epsilon_2, \ldots, \epsilon_5$ such that the 4 last branches through M^{-1} are 0, and $\gamma_2, \ldots, \gamma_5$ such that the last 4 branches through M are 0
- Solve the polynomial system of degree 3 in x₁...x₈ to make differentials match.

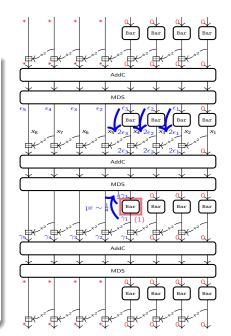


Limited birthday attack over 4 rounds: maps a dimension 4 subspace of \mathbb{F}_p^8 to a dimension 4 subspace.

Description of the attack

- Choose γ_1 with $\frac{1}{2}\gamma_1 \xrightarrow{Bar} \gamma_1$ with probability $\sim \frac{1}{4}$
- Solution Choose $\epsilon_1, \epsilon_2, \epsilon_3$ with $\epsilon_i \xrightarrow{Bar} 2\epsilon_i$ with probability at least T.
- Same the SBox (1) behaves as x → 2x, with probability 2⁻²².
- Choose $\epsilon_2, \ldots, \epsilon_5$ such that the 4 last branches through M^{-1} are 0, and $\gamma_2, \ldots, \gamma_5$ such that the last 4 branches through M are 0
- Solve the polynomial system of degree 3 in x₁...x₈ to make differentials match.

Need to **repeat** these steps $2^{22} \cdot 2^2 \cdot T^{-3}$ to ensure the assumptions hold.



Generating enough differentials

The problem...

- In order for all the assumptions to hold, we need to repeat the attack enough times.
- Trade-off: if T, the probability that the differentials go through Bar is high, the number N of differentials will be low (few good differentials), and $2^{-22} \cdot 2^{-2} \cdot p^3 \cdot N \ll 1$

The solution !

- We deliberately choose to active 3 Bar SBoxes to have more differentials to pass the 2^{-22} probability that Bar(x) = 2x
- \bullet Bars \approx parallel application of 8 small SBoxes S operating on \mathbb{F}_{256}
- Then we can choose activation patterns *inside* Bars.

Generating enough differentials

The solution, continued

- Let T be some threshold probability
- ② X_1 be the set of differentials through the small *S* that have probability ≥ *T*, X_2 those with probability ≥ $T^{1/2}$, X_3 those with probability ≥ $T^{1/3}$

In the second second

- Differentials from X_1 activating one small S,
- Pairs of differentials from X_2 activating two small S,
- etc...
- In total, we generate:

$$\binom{8}{1} \cdot (\#X_1)^1 + \binom{8}{2} \cdot (\#X_2)^2 + \binom{8}{3} \cdot (\#X_3)^3$$

differentials with probability $\geq T$ on Bar.

Generating enough differentials

The solution, continued

- Let T be some threshold probability
- ② X_1 be the set of differentials through the small *S* that have probability ≥ *T*, X_2 those with probability ≥ $T^{1/2}$, X_3 those with probability ≥ $T^{1/3}$

In the second second

- Differentials from X_1 activating one small S,
- Pairs of differentials from X_2 activating two small S,
- etc...
- In total, we generate:

$$\binom{8}{1} \cdot (\#X_1)^1 + \binom{8}{2} \cdot (\#X_2)^2 + \binom{8}{3} \cdot (\#X_3)^3$$

differentials with probability $\geq T$ on Bar.

• $T = \frac{1}{64}$: 2⁴² differentials, the attack succeeds with probability 0.59 • $T = \frac{1}{256}$: 2⁵² differentials, the attacks succeeds with probability 0.99999 Guilhem Jazeron Cryptanalysis of Monolith using rebound attacks March 31, 2025

8/10

Complexity of the attacks

The complexity is caused by two factors:

- Repeat the solving step: 2⁵² times.
- The complexity of solving a system of polynomial 8 polynomial equations of degree 3 using Gröbner basis: upper bounded by $\mathcal{O}(2^{39})$ using generic formulas.

In total: $O(2^{91})$.

The generic attack for mapping a 4-dimensional subspace to a 4-dimensional subspace is in $\mathcal{O}(2^{128})$ with words of size 64 bits.

Plan of this Section

1 The Monolith family of permutations

2 4-round rebound attack on Monolith-64

Open problems

How does this attack extend to more branches ?

- With 12 branches, more degrees of freedom.
- How much stronger does this attack become ?

How does this attack extend to more branches ?

- With 12 branches, more degrees of freedom.
- How much stronger does this attack become ?

Monolith-31?

- For Monolith-31, twice as many branches: how does the attack adapt ?
- Is doubling the number of branches really the good way to keep the same security level ?

How does this attack extend to more branches ?

- With 12 branches, more degrees of freedom.
- How much stronger does this attack become ?

Monolith-31?

- For Monolith-31, twice as many branches: how does the attack adapt ?
- Is doubling the number of branches really the good way to keep the same security level ?

Gröbner basis computation time

- In practice, systems generated from Monolith take much less time to solve than generic ones.
- Why ? How to theoretically assess the complexity of solving such systems ?

How does this attack extend to more branches ?

- With 12 branches, more degrees of freedom.
- How much stronger does this attack become ?

Monolith-31?

- For Monolith-31, twice as many branches: how does the attack adapt ?
- Is doubling the number of branches really the good way to keep the same security level ?

Gröbner basis computation time

- In practice, systems generated from Monolith take much less time to solve than generic ones.
- Why ? How to theoretically assess the complexity of solving such systems ?

Thank you ! Questions ?